644 research outputs found

    Generation of strong magnetic fields by r-modes in millisecond accreting neutron stars: induced deformations and gravitational wave emission

    Full text link
    Differential rotation induced by the r-mode instability can generate very strong toroidal fields in the core of accreting, millisecond spinning neutron stars. We introduce explicitly the magnetic damping term in the evolution equations of the r-modes and solve them numerically in the Newtonian limit, to follow the development and growth of the internal magnetic field. We show that the strength of the latter can reach large values, B∟1014B \sim 10^{14} G, in the core of the fastest accreting neutron stars. This is strong enough to induce a significant quadrupole moment of the neutron star mass distribution, corresponding to an ellipticity |\epsilon_B}| \sim 10^{-8}. If the symmetry axis of the induced magnetic field is not aligned with the spin axis, the neutron star radiates gravitational waves. We suggest that this mechanism may explain the upper limit of the spin frequencies observed in accreting neutron stars in Low Mass X-Ray Binaries. We discuss the relevance of our results for the search of gravitational waves.Comment: 11 pages, 8 figure

    GRB Afterglows with Energy Injection from a spinning down NS

    Full text link
    We investigate a model for the shallow decay phases of Gamma-ray Burst (GRB) afterglows discovered by Swift/XRT in the first hours following a GRB event. In the context of the fireball scenario, we consider the possibility that long-lived energy injection from a millisecond spinning, ultramagnetic neutron star (magnetar) powers afterglow emission during this phase. We consider the energy evolution in a relativistic shock subject to both radiative losses and energy injection from a spinning down magnetar in spherical symmetry. We model the energy injection term through magnetic dipole losses and discuss an approximate treatment for the dynamical evolution of the blastwave. We obtain an analytic solution for the energy evolution in the shock and associated lightcurves. To fully illustrate the potential of our solution we calculate lightcurves for a few selected X-ray afterglows observed by Swift and fit them using our theoretical lightcurves. Our solution naturally describes in a single picture the properties of the shallow decay phase and the transition to the so-called normal decay phase. In particular, we obtain remarkably good fits to X-ray afterglows for plausible parameters of the magnetar. Even though approximate, our treatment provides a step forward with respect to previously adopted approximations and provides additional support to the idea that a millisecond spinning (1-3 ms), ultramagnetic (B∼1014−1015\sim 10^{14}-10^{15} G) neutron star loosing spin energy through magnetic dipole radiation can explain the luminosity, durations and shapes of X-ray GRB afterglows.Comment: 7 pages, 2 figures, submitted to Astronomy & Astrophysics - referee's comments include

    The post-burst awakening of the anomalous x-ray pulsar in Westerlund

    Get PDF
    On 2006 September 21, an intense (~10^39 erg s^-1) and short (20 ms) burst was detected by Swift BAT at a position consistent with that of the candidate anomalous X-ray pulsar (AXP) CXOU J164710.2-455216, discovered by Chandra in 2005. Swift follow-up observations began ~13 hr after the event and found the source at a 1–10 keV flux level of about 4.5 x 10^-11 erg cm^-2 s^-1, i.e., ~300 times brighter than measured 5 days earlier by XMM-Newton. We report the results obtained from Swift BAT observations of the burst and subsequent Swift XRT observations carried out during the first 4 months after the burst. These data are complemented with those from two XMM-Newton observations (carried out just before and after the BAT event) and four archival Chandra observations carried out between 2005 and 2007. We find a phase-coherent solution for the source pulsations after the burst. The evolution of the pulse phase comprises an exponential component decaying with timescale of 1.4 days, which we interpret as the recovery stage following a large glitch (Δv/v ~ 6 x 10^-5). We also detect a quadratic component corresponding to a spin-down rate of P ~ 9 x 10^-13 s s^-1, implying a magnetic field strength of 10^14 G. During the first Swift XRT observation taken 0.6 days after the burst, the spectrum showed a kT ~0.65 keV blackbody (R_(BB) ~ 1.5 km) plus a Γ ~ 2.3 power law accounting for about 60% of the 1–10 keV observed flux. Analysis of Chandra archival data, taken during 2005 when the source was in quiescence, reveal that the modulation in quiescence is 100% pulsed at energies above ~4 keV and consistent with the (unusually small-sized) blackbody component being occulted by the neutron star as it rotates. These findings demonstrate that CXOU J164710.2-455216 is indeed an AXP; we compare them with the properties of three other AXPs which displayed similar behavior in the past

    Magnetic field decay in neutron stars: from Soft Gamma Repeaters to "weak field magnetars"

    Get PDF
    The recent discovery of the "weak field, old magnetar", the soft gamma repeater SGR 0418+5729, whose dipole magnetic field is less than 7.5 \times 10^{12} G, has raised perplexing questions: How can the neutron star produce SGR-like bursts with such a low magnetic field? What powers the observed X-ray emission when neither the rotational energy nor the magnetic dipole energy are sufficient? These observations, that suggest either a much larger energy reservoir or a much younger true age (or both), have renewed the interest in the evolutionary sequence of magnetars. We examine, here, a phenomenological model for the magnetic field decay: B_dip} \propto (B_dip)^{1+a} and compare its predictions with the observed period, P,the period derivative, \dot{P}, and the X-ray luminosity, L_X, of magnetar candidates. We find a strong evidence for a dipole field decay on a timescale of \sim 10^3 yr for the strongest (\sim 10^{15} G) field objects, with a decay index within the range 1 \leq a < 2 and more likely within 1.5\lesssim a \lesssim 1.8. The decaying field implies a younger age than what is implied by the spinown age. Surprisingly, even with the younger age, the energy released in the dipole field decay is insufficient to power the X-ray emission, suggesting the existence of a stronger internal field, B_int. Examining several models for the internal magnetic field decay we find that it must have a very large (> 10^{16} G) initial value. Our findings suggest two clear distinct evolutionary tracks -- the SGR/AXP branch and the transient branch, with a possible third branch involving high-field radio pulsars that age into low luminosity X-ray dim isolated neutron stars.Comment: 47 pages, 11 figures, accepted for publication on MNRAS, in pres

    Early X-ray and optical observations of the soft gamma-ray repeater SGR 0418+5729

    Full text link
    Emission of two short hard X-ray bursts on 2009 June 5 disclosed the existence of a new soft gamma-ray repeater, now catalogued as SGR 0418+5729. After a few days, X-ray pulsations at a period of 9.1 s were discovered in its persistent emission. SGR 0418+5729 was monitored almost since its discovery with the Rossi X-ray Timing Explorer (2-10 keV energy range) and observed many times with Swift (0.2-10 keV). The source persistent X-ray emission faded by a factor 10 in about 160 days, with a steepening in the decay about 19 days after the activation. The X-ray spectrum is well described by a simple absorbed blackbody, with a temperature decreasing in time. A phase-coherent timing solution over the 160 day time span yielded no evidence for any significant evolution of the spin period, implying a 3-sigma upper limit of 1.1E-13 s/s on the period derivative and of 3E+13 G on the surface dipole magnetic field. Phase-resolved spectroscopy provided evidence for a significant variation of the spectrum as a function of the stellar rotation, pointing to the presence of two emitting caps, one of which became hotter during the outburst. Finally, a deep observation of the field of SGR 0418+5729 with the new Gran Telescopio Canarias 10.4-m telescope allowed us to set an upper limit on the source optical flux of i'>25.1 mag, corresponding to an X-ray-to-optical flux ratio exceeding 10000, consistent with the characteristics of other magnetars.Comment: The paper (10 pages) contains 6 colour figures and 2 tables; accepted for publication in MNRA

    Recent Progress on Anomalous X-ray Pulsars

    Get PDF
    I review recent observational progress on Anomalous X-ray Pulsars, with an emphasis on timing, variability, and spectra. Highlighted results include the recent timing and flux stabilization of the notoriously unstable AXP 1E 1048.1-5937, the remarkable glitches seen in two AXPs, the newly recognized variety of AXP variability types, including outbursts, bursts, flares, and pulse profile changes, as well as recent discoveries regarding AXP spectra, including their surprising hard X-ray and far-infrared emission, as well as the pulsed radio emission seen in one source. Much has been learned about these enigmatic objects over the past few years, with the pace of discoveries remaining steady. However additional work on both observational and theoretical fronts is needed before we have a comprehensive understanding of AXPs and their place in the zoo of manifestations of young neutron stars.Comment: 10 pages, 6 figures; to appear in proceedings of the conference "Isolated Neutron Stars: From the Interior to the Surface" eds. S. Zane, R. Turolla, D. Page; Astrophysics & Space Science in pres

    X-ray emission from isolated neutron stars

    Full text link
    X-ray emission is a common feature of all varieties of isolated neutron stars (INS) and, thanks to the advent of sensitive instruments with good spectroscopic, timing, and imaging capabilities, X-ray observations have become an essential tool in the study of these objects. Non-thermal X-rays from young, energetic radio pulsars have been detected since the beginning of X-ray astronomy, and the long-sought thermal emission from cooling neutron star's surfaces can now be studied in detail in many pulsars spanning different ages, magnetic fields, and, possibly, surface compositions. In addition, other different manifestations of INS have been discovered with X-ray observations. These new classes of high-energy sources, comprising the nearby X-ray Dim Isolated Neutron Stars, the Central Compact Objects in supernova remnants, the Anomalous X-ray Pulsars, and the Soft Gamma-ray Repeaters, now add up to several tens of confirmed members, plus many candidates, and allow us to study a variety of phenomena unobservable in "standard'' radio pulsars.Comment: Chapter to be published in the book of proceedings of the 1st Sant Cugat Forum on Astrophysics, "ICREA Workshop on the high-energy emission from pulsars and their systems", held in April, 201

    Long-term spectral and timing properties of the soft gamma-ray repeater SGR 1833-0832 and detection of extended X-ray emission around the radio pulsar PSR B1830-08

    Full text link
    SGR 1833-0832 was discovered on 2010 March 19 thanks to the Swift detection of a short hard X-ray burst and follow-up X-ray observations. Since then, it was repeatedly observed with Swift, Rossi X-ray Timing Explorer, and XMM-Newton. Using these data, which span about 225 days, we studied the long-term spectral and timing characteristics of SGR 1833-0832. We found evidence for diffuse emission surrounding SGR 1833-0832, which is most likely a halo produced by the scattering of the point source X-ray radiation by dust along the line of sight, and we show that the source X-ray spectrum is well described by an absorbed blackbody, with temperature kT=1.2 keV and absorbing column nH=(10.4+/-0.2)E22 cm^-2, while different or more complex models are disfavoured. The source persistent X-ray emission remained fairly constant at about 3.7E-12 erg/cm^2/s for the first 20 days after the onset of the bursting episode, then it faded by a factor 40 in the subsequent 140 days, following a power-law trend with index alpha=-0.5. We obtained a phase-coherent timing solution with the longest baseline (225 days) to date for this source which, besides period P=7.5654084(4) s and period derivative dP/dt=3.5(3)E-12 s/s, includes higher order period derivatives. We also report on our search of the counterpart to the SGR at radio frequencies using the Australia Telescope Compact Array and the Parkes radio telescope. No evidence for radio emission was found, down to flux densities of 0.9 mJy (at 1.5 GHz) and 0.09 mJy (at 1.4 GHz) for the continuum and pulsed emissions, respectively, consistently with other observations at different epochs.Comment: 12 pages, 7 colour figures and 3 tables, accepted for publication in MNRAS. Figure 6 in reduced quality and abstract abridged for astro-ph submissio

    Magnetic Field Generation in Stars

    Get PDF
    Enormous progress has been made on observing stellar magnetism in stars from the main sequence through to compact objects. Recent data have thrown into sharper relief the vexed question of the origin of stellar magnetic fields, which remains one of the main unanswered questions in astrophysics. In this chapter we review recent work in this area of research. In particular, we look at the fossil field hypothesis which links magnetism in compact stars to magnetism in main sequence and pre-main sequence stars and we consider why its feasibility has now been questioned particularly in the context of highly magnetic white dwarfs. We also review the fossil versus dynamo debate in the context of neutron stars and the roles played by key physical processes such as buoyancy, helicity, and superfluid turbulence,in the generation and stability of neutron star fields. Independent information on the internal magnetic field of neutron stars will come from future gravitational wave detections. Thus we maybe at the dawn of a new era of exciting discoveries in compact star magnetism driven by the opening of a new, non-electromagnetic observational window. We also review recent advances in the theory and computation of magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo theory. These advances offer insight into the action of stellar dynamos as well as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field generation in stars to appear in Space Science Reviews, Springe

    A Swift gaze into the 2006 March 29th burst forest of SGR 1900+14

    Full text link
    We report on the intense burst ``forest'' recorded on 2006 March 29 which lasted for ~30s. More than 40 bursts were detected both by BAT and by XRT, seven of which are rare intermediate flares (IFs): several times 10^{42} ergs were released. The BAT data were used to carry out time-resolved spectroscopy in the 14-100keV range down to 8ms timescales. This unique dataset allowed us to test the magnetar model predictions such as the magnetically trapped fireball and the twisted magnetosphere over an unprecedented range of fluxes and with large statistics (in terms of both photons and IFs). We confirmed that a two blackbody component fits adequately the time-resolved and integrated spectra of IFs. However, Comptonization models give comparable good reduced chi^2. Moreover, we found: i) a change of behavior, around ~10^{41} erg/s, above which the softer blackbody shows a sort of saturation while the harder one still grows to a few times 10^{41} erg/s; ii) a rather sharp correlation between temperature and radii of the blackbodies (R^2 prop kT^{-3}), which holds for the most luminous parts of the flares (approximately for L_{tot} > 10^{41} erg/s). Within the magnetar model, the majority of these findings can be accounted for in terms of thermalised emission from the E-mode and O-mode photospheres. Interestingly, the maximum observed luminosity coming from a region of ~15km matches the magnetic Eddington luminosity at the same radius, for a surface dipole field of ~8 x 10^{14} G (virtually equal to the one deduced from the spindown of SGR 1900+14).Comment: Accepted for publication on ApJ, 15 pages, 10 figure
    • …
    corecore